Dictionary Learning on Riemannian Manifolds
نویسندگان
چکیده
Existing dictionary learning algorithms rely heavily on the assumption that the data points are vectors in some Euclidean space R, and the dictionary is learned from the input data using only the vector space structure of R. However, in many applications, features and data points often belong to some Riemannian manifold with its intrinsic metric structure that is potentially important and critical to the application. The extrinsic viewpoint of existing dictionary learning methods becomes inappropriate and inadequate if the intrinsic geometric structure is required to be incorporated in the model. In this paper, we develop a very general dictionary learning framework for data lying on some known Riemannnian manifolds. Using the local linear structures furnished by the Riemannian geometry, we propose a novel dictionary learning algorithm that can be considered as data-specific, a feature that is not present in the existing methods. We show that both the dictionary and sparse coding can be effectively computed for Riemannian manifolds. We validate the proposed method using a classification problem in medical image analysis. The preliminary results demonstrate that the dictionary learned using the proposed method can and does indeed provide real improvements when compared with other direct approaches.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملOn A Nonlinear Generalization of Sparse Coding and Dictionary Learning
Existing dictionary learning algorithms are based on the assumption that the data are vectors in an Euclidean vector space ℝ d , and the dictionary is learned from the training data using the vector space structure of ℝ d and its Euclidean L2-metric. However, in many applications, features and data often originated from a Riemannian manifold that does not support a global linear (vector space) ...
متن کاملOnline Dictionary Learning on Symmetric Positive Definite Manifolds with Vision Applications
Symmetric Positive Definite (SPD) matrices in the form of region covariances are considered rich descriptors for images and videos. Recent studies suggest that exploiting the Riemannian geometry of the SPD manifolds could lead to improved performances for vision applications. For tasks involving processing large-scale and dynamic data in computer vision, the underlying model is required to prog...
متن کاملSparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach
Recent advances suggest that a wide range of computer vision problems can be addressed more appropriately by considering non-Euclidean geometry. This paper tackles the problem of sparse coding and dictionary learning in the space of symmetric positive definite matrices, which form a Riemannian manifold. With the aid of the recently introduced Stein kernel (related to a symmetric version of Breg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012